Infinite-Dimensional Inverse Problems with Finite Measurements
نویسندگان
چکیده
We present a general framework to study uniqueness, stability and reconstruction for infinite-dimensional inverse problems when only finite-dimensional approximation of the measurements is available. For large class satisfying Lipschitz we show that same estimate holds even with finite number measurements. also derive globally convergent algorithm based on Landweber iteration. This theory applies nonlinear ill-posed such as electrical impedance tomography (EIT), scattering quantitative photoacoustic (QPAT), under assumption unknown belongs subspace. In particular, estimates EIT matrix Neumann-to-Dirichlet map; problem amplitude at directions $$S^2 \times S^2$$ ; QPAT low-pass filter internal energy.
منابع مشابه
Geometric MCMC for infinite-dimensional inverse problems
Bayesian inverse problems often involve sampling posterior distributions on infinite-dimensional function spaces. Traditional Markov chain Monte Carlo (MCMC) algorithms are characterized by deteriorating mixing times upon meshrefinement, when the finite-dimensional approximations become more accurate. Such methods are typically forced to reduce step-sizes as the discretization gets finer, and t...
متن کاملOn Infinite-dimensional Hierarchical Probability Models in Statistical Inverse Problems
In this article, the solution of a statistical inverse problem M = AU + E by the Bayesian approach is studied where U is a function on the unit circle T, i.e., a periodic signal. The mapping A is a smoothing linear operator and E a Gaussian noise. The connection to the solution of a finite-dimensional computational model Mkn = AkUn+Ek is discussed. Furthermore, a novel hierarchical prior model ...
متن کاملinfinite dimensional garch models
مدلهای گارچ در فضاهای هیلبرت پایان نامه حاضر شامل دو بخش می باشد. در قسمت اول مدلهای اتورگرسیو تعمیم یافته مشروط به ناهمگنی واریانس در فضاهای هیلبرت را معرفی، مفاهیم ریاضی مورد نیاز در تحلیل این مدلها در دامنه زمان را مطرح کرده و آنها را مورد بررسی قرار می دهیم. بر اساس پیشرفتهایی که اخیرا در زمینه تئوری داده های تابعی و آماره های عملگری ایجاد شده است، فرآیندهایی که دارای مقادیر در فضاهای ...
15 صفحه اولA Finite Algorithm for Solving Infinite Dimensional Optimization Problems
We consider the general optimization problem (P ) of selecting a continuous function x over a σ -compact Hausdorff space T to a metric space A, from a feasible region X of such functions, so as to minimize a functional c on X. We require that X consist of a closed equicontinuous family of functions lying in the product (over T ) of compact subsets Yt of A. (An important special case is the opti...
متن کاملFinite Dimensional Hilbert Spaces and Linear Inverse Problems
Linear Vector Space. A Vector Space, X , is a collection of vectors, x ∈ X , over a field, F , of scalars. Any two vectors x, y ∈ X can be added to form x+y ∈ X where the operation “+” of vector addition is associative and commutative. The vector space X must contain an additive identity (the zero vector 0) and, for every vector x, an additive inverse −x. The required properties of vector addit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Archive for Rational Mechanics and Analysis
سال: 2021
ISSN: ['0003-9527', '1432-0673']
DOI: https://doi.org/10.1007/s00205-021-01718-4